Skip to main content

A New View of the Moon’s Formation.


This artist’s rendering shows the collision of two planetary bodies. A collision like this is believed to have formed the moon within the first 150 million years after our solar system formed. Credit: NASA/JPL-Caltech


Within the first 150 million years after our solar system formed, a giant body roughly the size of Mars struck and merged with Earth, blasting a huge cloud of rock and debris into space. This cloud would eventually coalesce and form the moon.
For almost 30 years, planetary scientists have been quite happy with this explanation–with one major exception. Although this scenario makes sense when you look at the size of the moon and the physics of its orbit around Earth, things start to break down a little when you compare their isotopic compositions–the geological equivalent of a DNA “fingerprint.” Specifically, Earth and the moon are too much alike.
The expectation has long been that the moon should carry the isotopic “fingerprint” of the foreign body, which scientists have named Theia. Because Theia came from elsewhere in the solar system, it probably had a much different isotopic fingerprint than early Earth.
Now, a team of scientists at the University of Maryland has generated a new isotopic fingerprint of the moon that could provide the missing piece of the puzzle. By zeroing in on an isotope of Tungsten present in both the moon and Earth, the UMD team is the first to reconcile the accepted model of the moon’s formation with the unexpectedly similar isotopic fingerprints of both bodies. The results suggest that the impact of Theia into early Earth was so violent, the resulting debris cloud mixed thoroughly before settling down and forming the moon. The findings appear in the April 8, 2015 advance online edition of the journal Nature.

“The problem is that Earth and the moon are very similar with respect to their isotopic fingerprints, suggesting that they are both ultimately formed from the same material that gathered early in the solar system’s history,” said Richard Walker, a professor of geology at UMD and co-author of the study. “This is surprising, because the Mars-sized body that created the moon is expected to have been very different. So the conundrum is that Earth and the moon shouldn’t be as similar as they are.”
Several different theories have emerged over the years to explain the similar fingerprints of Earth and the moon. Perhaps the impact created a huge cloud of debris that mixed thoroughly with the Earth and then later condensed to form the moon. Or Theia could have, coincidentally, been isotopically similar to young Earth. A third possibility is that the moon formed from Earthen materials, rather than from Theia, although this would have been a very unusual type of impact.
To tease out an explanation, Walker and his team looked to another well-documented phenomenon in the early history of the solar system. Evidence suggests that both Earth and the moon gathered additional material after the main impact, and that Earth collected more of this debris and dust. This new material contained a lot of Tungsten, but relatively little of this was of a lighter isotope known as Tungsten-182. Taking these two observations together, one would expect that Earth would have less Tungsten-182 than the moon.
Sure enough, when comparing rocks from the moon and Earth, Walker and his team found that the moon has a slightly higher proportion of Tungsten-182. The key, however, is how much.
“The small, but significant, difference in the Tungsten isotopic composition between Earth and the moon perfectly corresponds to the different amounts of material gathered by Earth and the moon post-impact,” Walker said. “This means that, right after the moon formed, it had exactly the same isotopic composition as Earth’s mantle.”
This finding supports the idea that the mass of material created by the impact, which later formed the moon, must have mixed together thoroughly before the moon coalesced and cooled. This would explain both the overall similarities in isotopic fingerprints and the slight differences in Tungsten-182.
It also largely rules out the idea that the Mars-sized body was of similar composition, or that the moon formed from material contained in the pre-impact Earth. In both cases, it would be highly unlikely to see such a perfect correlation between Tungsten-182 and the amounts of material gathered by the moon and Earth post-impact.
“This result brings us one step closer to understanding the close familial relationship between Earth and the moon,” Walker said. “We still need to work out the details, but it’s clear that our early solar system was a very violent place.”
Reference:
Mathieu Touboul, Igor S. Puchtel, Richard J. Walker. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature, 2015; DOI: 10.1038/nature14355
Note: The above story is based on materials provided by University of Maryland.

Comments

Popular posts from this blog

The world’s rarest minerals

Nevadaite (Cu2+,Al,V3+)6[Al8(PO4)8F8](OH)2·22H2O) is a category 1 and 2 rarity–formed from the scarce elements vanadium and copper under very restricted environmental conditions. The crystals are colorful but microscopic, and only known from two localities–Eureka County, Nevada, and a copper mine in Kyrgyzstan. Credit: Robert Downs, University of Arizona. Scientists have inventoried and categorized all of Earth’s rare mineral species described to date, each sampled from five or fewer sites around the globe. Individually, several of the species have a known supply worldwide smaller than a sugar cube. These 2,550 minerals are far more rare than pricey diamonds and gems usually presented as tokens of love. But while their rarity would logically make them the most precious of minerals, many would not work in a Valentine’s Day ring setting. Several are prone to melt, evaporate or dehydrate. And a few, vampire-like, gradually decompose on exposure to sunlight. Their greatest ...

You Can't Get Entangled Without a Wormhole

You Can't Get Entangled Without a Wormhole:-Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics -- so strange, in fact, that Albert Einstein famously referred to it as "spooky action at a distance." Essentially, entanglement involves two particles, each occupying multiple states at once -- a condition referred to as superposition. For example, both particles may simultaneously spin clockwise and counterclockwise. But  neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state. The resulting correlations between the particles are preserved, even if they reside on opposite ends of the universe. But what enables particles to communicate instantaneously -- and seemingly faster than the speed of light -- over such vast distances? Earlier this year, physicists proposed an answer in the form of "wormholes," or gravitational tunnels. The group showed th...

Scientists Are Mapping The World's Largest Volcano

New 3-D maps reveal some of the features of the Pacific's Tamu Massif, including this long cliff. Imaging courtesy of Schmidt Ocean Institute After 36 days of battling sharks that kept biting their equipment, scientists have returned from the remote Pacific Ocean with a new way of looking at the world’s largest—and possibly most mysterious—volcano, Tamu Massif. The team has begun making 3-D maps that offer the clearest look yet at the underwater mountain, which covers an area the size of New Mexico. In the coming months, the maps will be refined and the data analyzed, with the ultimate goal of figuring out how the mountain was formed. It's possible that the western edge of Tamu Massif is actually a separate mountain that formed at a different time, says William Sager, a geologist at the University of Houston who led the expedition. That would explain some differences between the western part of the mountain and the main body.  The team also found that the massi...