Skip to main content

Scientists Developed A New Method For Predicting Volcanic Eruptions



The Colima volcano is regarded as one of the most dangerous
in Mexico due to its large explosive eruptions



Researchers from the Department of Earth Sciences at Royal Holloway, University of London, have developed a new method which could more accurately determine the conditions needed for a volcano to erupt. The study will be published on 28 October in Scientific Reports.

The team, composed of PhD students John Browning and Sandy Drymoni and Professor Agust Gudmundsson, used newly collected geological data and historical data on previous eruptions of the Santorini volcano in Greece, to work out the capacity of the volcano's magma-chamber. They were then able to build a model which allowed them to estimate the pressure increase in the magma-chamber when it's being refilled and therefore forecast when it's likely to rupture and potentially cause an eruption.

The team travelled to island of Santorini in Greece to collect data on the type of magma which feeds eruptions. They took measurements of magma-filled fractures (dykes) which are exposed in impressive form along the northern wall of the Santorini caldera. Using geodetic data from 2012, when the volcano was thought to be close to an eruption, the team determined, using their new method, that the magma chamber did, in fact, not rupture at that time. Thus, while great volume of new magma was received by the Santorini chamber in 2012, so that it came close to rupture (and possible eruption), the chamber did not quite reach the rupture stage.

The new model has the potential to forecast when magma chambers in other volcanoes could rupture and potentially lead to eruptions, which should aid emergency planning and risk assessments.

John Browning, said: "We have been able to provide constraints on the volume of magma stored in a shallow magma chamber underneath Santorini Caldera. We believe our new model can be used to forecast the timing of magma-chamber rupture at Santorini and, eventually, at well-monitored volcanoes worldwide. Whilst this is an important step towards reliable prediction of volcanic eruptions, a number of challenges still exist. For example, even if the magma chamber were to rupture we currently have no way of predicting whether the magma-filled fracture (the dyke) injected from the chamber will make it to the surface. In most cases the magma stalls or stops before it reaches the surface. Under which conditions magma stalls in volcanoes (preventing eruption) is among the most important unsolved problems in volcanology."

Reference:
John Browning, Kyriaki Drymoni, Agust Gudmundsson. Forecasting magma-chamber rupture at Santorini volcano, Greece. Scientific Reports, 2015; 5: 15785 

Note: The above post is reprinted from materials provided by University of Royal Holloway London.

Comments

Popular posts from this blog

The world’s rarest minerals

Nevadaite (Cu2+,Al,V3+)6[Al8(PO4)8F8](OH)2·22H2O) is a category 1 and 2 rarity–formed from the scarce elements vanadium and copper under very restricted environmental conditions. The crystals are colorful but microscopic, and only known from two localities–Eureka County, Nevada, and a copper mine in Kyrgyzstan. Credit: Robert Downs, University of Arizona. Scientists have inventoried and categorized all of Earth’s rare mineral species described to date, each sampled from five or fewer sites around the globe. Individually, several of the species have a known supply worldwide smaller than a sugar cube. These 2,550 minerals are far more rare than pricey diamonds and gems usually presented as tokens of love. But while their rarity would logically make them the most precious of minerals, many would not work in a Valentine’s Day ring setting. Several are prone to melt, evaporate or dehydrate. And a few, vampire-like, gradually decompose on exposure to sunlight. Their greatest ...

You Can't Get Entangled Without a Wormhole

You Can't Get Entangled Without a Wormhole:-Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics -- so strange, in fact, that Albert Einstein famously referred to it as "spooky action at a distance." Essentially, entanglement involves two particles, each occupying multiple states at once -- a condition referred to as superposition. For example, both particles may simultaneously spin clockwise and counterclockwise. But  neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state. The resulting correlations between the particles are preserved, even if they reside on opposite ends of the universe. But what enables particles to communicate instantaneously -- and seemingly faster than the speed of light -- over such vast distances? Earlier this year, physicists proposed an answer in the form of "wormholes," or gravitational tunnels. The group showed th...

Scientists Are Mapping The World's Largest Volcano

New 3-D maps reveal some of the features of the Pacific's Tamu Massif, including this long cliff. Imaging courtesy of Schmidt Ocean Institute After 36 days of battling sharks that kept biting their equipment, scientists have returned from the remote Pacific Ocean with a new way of looking at the world’s largest—and possibly most mysterious—volcano, Tamu Massif. The team has begun making 3-D maps that offer the clearest look yet at the underwater mountain, which covers an area the size of New Mexico. In the coming months, the maps will be refined and the data analyzed, with the ultimate goal of figuring out how the mountain was formed. It's possible that the western edge of Tamu Massif is actually a separate mountain that formed at a different time, says William Sager, a geologist at the University of Houston who led the expedition. That would explain some differences between the western part of the mountain and the main body.  The team also found that the massi...